Source code for pyrad.proc.process_phase

"""
pyrad.proc.process_phase
======================================

Functions for PhiDP and KDP processing and attenuation correction

.. autosummary::
    :toctree: generated/

    process_correct_phidp0
    process_smooth_phidp_single_window
    process_smooth_phidp_double_window
    process_kdp_leastsquare_single_window
    process_kdp_leastsquare_double_window
    process_phidp_kdp_Vulpiani
    process_phidp_kdp_Kalman
    process_phidp_kdp_Maesaka
    process_phidp_kdp_lp
    process_selfconsistency_kdp_phidp
    process_selfconsistency_bias
    process_attenuation

"""

from copy import deepcopy
from warnings import warn

import numpy as np

import pyart

from ..io.io_aux import get_datatype_fields


[docs]def process_correct_phidp0(procstatus, dscfg, radar_list=None): """ corrects phidp of the system phase Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types rmin : float. Dataset keyword The minimum range where to look for valid data [m] rmax : float. Dataset keyword The maximum range where to look for valid data [m] rcell : float. Dataset keyword The length of a continuous cell to consider it valid precip [m] Zmin : float. Dataset keyword The minimum reflectivity [dBZ] Zmax : float. Dataset keyword The maximum reflectivity [dBZ] radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == 'dBZ': refl_field = 'reflectivity' if datatype == 'dBZc': refl_field = 'corrected_reflectivity' if datatype == 'PhiDP': psidp_field = 'differential_phase' if datatype == 'PhiDPc': psidp_field = 'corrected_differential_phase' if datatype == 'uPhiDP': psidp_field = 'uncorrected_differential_phase' ind_rad = int(radarnr[5:8])-1 if radar_list[ind_rad] is None: warn('No valid radar') return None, None radar = radar_list[ind_rad] if (refl_field not in radar.fields) or (psidp_field not in radar.fields): warn('Unable to correct PhiDP system offset. Missing data') return None, None ind_rmin = np.where(radar.range['data'] > dscfg['rmin'])[0][0] ind_rmax = np.where(radar.range['data'] < dscfg['rmax'])[0][-1] r_res = radar.range['data'][1]-radar.range['data'][0] min_rcons = int(dscfg['rcell']/r_res) if psidp_field.startswith('corrected_'): phidp_field = psidp_field elif psidp_field.startswith('uncorrected_'): phidp_field = psidp_field.replace('uncorrected_', 'corrected_', 1) else: phidp_field = 'corrected_'+psidp_field phidp = pyart.correct.correct_sys_phase( radar, ind_rmin=ind_rmin, ind_rmax=ind_rmax, min_rcons=min_rcons, zmin=dscfg['Zmin'], zmax=dscfg['Zmax'], psidp_field=psidp_field, refl_field=refl_field, phidp_field=phidp_field) # prepare for exit new_dataset = {'radar_out': deepcopy(radar)} new_dataset['radar_out'].fields = dict() new_dataset['radar_out'].add_field(phidp_field, phidp) return new_dataset, ind_rad
[docs]def process_smooth_phidp_single_window(procstatus, dscfg, radar_list=None): """ corrects phidp of the system phase and smoothes it using one window Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types rmin : float. Dataset keyword The minimum range where to look for valid data [m] rmax : float. Dataset keyword The maximum range where to look for valid data [m] rcell : float. Dataset keyword The length of a continuous cell to consider it valid precip [m] rwind : float. Dataset keyword The length of the smoothing window [m] Zmin : float. Dataset keyword The minimum reflectivity [dBZ] Zmax : float. Dataset keyword The maximum reflectivity [dBZ] radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == 'dBZ': refl_field = 'reflectivity' if datatype == 'dBZc': refl_field = 'corrected_reflectivity' if datatype == 'PhiDP': psidp_field = 'differential_phase' if datatype == 'PhiDPc': psidp_field = 'corrected_differential_phase' if datatype == 'uPhiDP': psidp_field = 'uncorrected_differential_phase' ind_rad = int(radarnr[5:8])-1 if radar_list[ind_rad] is None: warn('No valid radar') return None, None radar = radar_list[ind_rad] if (refl_field not in radar.fields) or (psidp_field not in radar.fields): warn('Unable to smooth PhiDP. Missing data') return None, None ind_rmin = np.where(radar.range['data'] > dscfg['rmin'])[0][0] ind_rmax = np.where(radar.range['data'] < dscfg['rmax'])[0][-1] r_res = radar.range['data'][1]-radar.range['data'][0] min_rcons = int(dscfg['rcell']/r_res) wind_len = int(dscfg['rwind']/r_res) min_valid = int(wind_len/2+1) if psidp_field.startswith('corrected_'): phidp_field = psidp_field elif psidp_field.startswith('uncorrected_'): phidp_field = psidp_field.replace('uncorrected_', 'corrected_', 1) else: phidp_field = 'corrected_'+psidp_field phidp = pyart.correct.smooth_phidp_single_window( radar, ind_rmin=ind_rmin, ind_rmax=ind_rmax, min_rcons=min_rcons, zmin=dscfg['Zmin'], zmax=dscfg['Zmax'], wind_len=wind_len, min_valid=min_valid, psidp_field=psidp_field, refl_field=refl_field, phidp_field=phidp_field) # prepare for exit new_dataset = {'radar_out': deepcopy(radar)} new_dataset['radar_out'].fields = dict() new_dataset['radar_out'].add_field(phidp_field, phidp) return new_dataset, ind_rad
[docs]def process_smooth_phidp_double_window(procstatus, dscfg, radar_list=None): """ corrects phidp of the system phase and smoothes it using one window Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types rmin : float. Dataset keyword The minimum range where to look for valid data [m] rmax : float. Dataset keyword The maximum range where to look for valid data [m] rcell : float. Dataset keyword The length of a continuous cell to consider it valid precip [m] rwinds : float. Dataset keyword The length of the short smoothing window [m] rwindl : float. Dataset keyword The length of the long smoothing window [m] Zmin : float. Dataset keyword The minimum reflectivity [dBZ] Zmax : float. Dataset keyword The maximum reflectivity [dBZ] Zthr : float. Dataset keyword The threshold defining wich smoothed data to used [dBZ] radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == 'dBZ': refl_field = 'reflectivity' if datatype == 'dBZc': refl_field = 'corrected_reflectivity' if datatype == 'PhiDP': psidp_field = 'differential_phase' if datatype == 'PhiDPc': psidp_field = 'corrected_differential_phase' if datatype == 'uPhiDP': psidp_field = 'uncorrected_differential_phase' ind_rad = int(radarnr[5:8])-1 if radar_list[ind_rad] is None: warn('No valid radar') return None, None radar = radar_list[ind_rad] if (refl_field not in radar.fields) or (psidp_field not in radar.fields): warn('Unable to smooth PhiDP. Missing data') return None, None ind_rmin = np.where(radar.range['data'] > dscfg['rmin'])[0][0] ind_rmax = np.where(radar.range['data'] < dscfg['rmax'])[0][-1] r_res = radar.range['data'][1]-radar.range['data'][0] min_rcons = int(dscfg['rcell']/r_res) swind_len = int(dscfg['rwinds']/r_res) smin_valid = int(swind_len/2+1) lwind_len = int(dscfg['rwindl']/r_res) lmin_valid = int(lwind_len/2+1) if psidp_field.startswith('corrected_'): phidp_field = psidp_field elif psidp_field.startswith('uncorrected_'): phidp_field = psidp_field.replace('uncorrected_', 'corrected_', 1) else: phidp_field = 'corrected_'+psidp_field phidp = pyart.correct.smooth_phidp_double_window( radar, ind_rmin=ind_rmin, ind_rmax=ind_rmax, min_rcons=min_rcons, zmin=dscfg['Zmin'], zmax=dscfg['Zmax'], swind_len=swind_len, smin_valid=smin_valid, lwind_len=lwind_len, lmin_valid=lmin_valid, zthr=dscfg['Zthr'], psidp_field=psidp_field, refl_field=refl_field, phidp_field=phidp_field) # prepare for exit new_dataset = {'radar_out': deepcopy(radar)} new_dataset['radar_out'].fields = dict() new_dataset['radar_out'].add_field(phidp_field, phidp) return new_dataset, ind_rad
[docs]def process_phidp_kdp_Maesaka(procstatus, dscfg, radar_list=None): """ Estimates PhiDP and KDP using the method by Maesaka. This method only retrieves data in rain (i.e. below the melting layer) Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types rmin : float. Dataset keyword The minimum range where to look for valid data [m] rmax : float. Dataset keyword The maximum range where to look for valid data [m] rcell : float. Dataset keyword The length of a continuous cell to consider it valid precip [m] Zmin : float. Dataset keyword The minimum reflectivity [dBZ] Zmax : float. Dataset keyword The maximum reflectivity [dBZ] fzl : float. Dataset keyword The freezing level height [m]. Default 2000. ml_thickness : float. Dataset keyword The melting layer thickness in meters. Default 700. beamwidth : float. Dataset keyword the antenna beamwidth [deg]. If None that of the keys radar_beam_width_h or radar_beam_width_v in attribute instrument_parameters of the radar object will be used. If the key or the attribute are not present the beamwidth will be set to None radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None temp_field = None iso0_field = None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == 'PhiDP': psidp_field = 'differential_phase' if datatype == 'PhiDPc': psidp_field = 'corrected_differential_phase' if datatype == 'uPhiDP': psidp_field = 'uncorrected_differential_phase' if datatype == 'dBZ': refl_field = 'reflectivity' if datatype == 'dBZc': refl_field = 'corrected_reflectivity' if datatype == 'TEMP': temp_field = 'temperature' if datatype == 'H_ISO0': iso0_field = 'height_over_iso0' ind_rad = int(radarnr[5:8])-1 if radar_list[ind_rad] is None: warn('No valid radar') return None, None radar = radar_list[ind_rad] if ((refl_field not in radar.fields) or (psidp_field not in radar.fields)): warn('Unable to retrieve PhiDP KDP using the Maesaka approach. ' + 'Missing data') return None, None # determine which freezing level reference temp_ref = 'temperature' if temp_field is None and iso0_field is None: warn('Field to obtain the freezing level was not specified. ' + 'Using fixed freezing level height') temp_ref = 'fixed_fzl' elif temp_field is not None: if temp_field not in radar.fields: warn('COSMO temperature field not available. ' + 'Using fixed freezing level height') temp_ref = 'fixed_fzl' elif iso0_field is not None: if iso0_field not in radar.fields: warn('Height over iso0 field not available. ' + 'Using fixed freezing level height') temp_ref = 'fixed_fzl' else: temp_ref = 'height_over_iso0' # determine freezing level height if necessary fzl = None if temp_ref == 'fixed_fzl': if 'fzl' in dscfg: fzl = dscfg['fzl'] else: fzl = 2000. warn('Freezing level height not defined. Using default ' + str(fzl)+' m') thickness = 700. if 'ml_thickness' in dscfg: thickness = dscfg['ml_thickness'] phidp_field = 'corrected_differential_phase' kdp_field = 'corrected_specific_differential_phase' radar_aux = deepcopy(radar) # correct PhiDP0 ind_rmin = np.where(radar_aux.range['data'] > dscfg['rmin'])[0][0] ind_rmax = np.where(radar_aux.range['data'] < dscfg['rmax'])[0][-1] r_res = radar_aux.range['data'][1]-radar_aux.range['data'][0] min_rcons = int(dscfg['rcell']/r_res) phidp = pyart.correct.correct_sys_phase( radar_aux, ind_rmin=ind_rmin, ind_rmax=ind_rmax, min_rcons=min_rcons, zmin=dscfg['Zmin'], zmax=dscfg['Zmax'], psidp_field=psidp_field, refl_field=refl_field, phidp_field=phidp_field) # filter out data in an above the melting layer mask = np.ma.getmaskarray(phidp['data']) beamwidth = dscfg.get('beamwidth', None) if beamwidth is None: if radar.instrument_parameters is not None: if 'radar_beam_width_h' in radar.instrument_parameters: beamwidth = radar.instrument_parameters['radar_beam_width_h'][ 'data'][0] elif 'radar_beam_width_v' in radar.instrument_parameters: beamwidth = radar.instrument_parameters['radar_beam_width_v'][ 'data'][0] if beamwidth is None: warn('Antenna beam width unknown.') mask_fzl, _ = pyart.correct.get_mask_fzl( radar_aux, fzl=fzl, doc=15, min_temp=0., max_h_iso0=0., thickness=thickness, beamwidth=beamwidth, temp_field=temp_field, iso0_field=iso0_field, temp_ref=temp_ref) mask = np.logical_or(mask, mask_fzl) # filter out data with invalid reflectivity mask_refl = np.ma.getmaskarray(radar_aux.fields[refl_field]['data']) mask = np.logical_or(mask, mask_refl) phidp['data'] = np.ma.masked_where(mask, phidp['data']) fill_value = pyart.config.get_fillvalue() radar_aux.add_field(phidp_field, phidp, replace_existing=True) # the return data is not a masked array kdp, phidpf, _ = pyart.retrieve.kdp_proc.kdp_maesaka( radar_aux, gatefilter=None, method='cg', backscatter=None, Clpf=1., length_scale=None, first_guess=0.01, finite_order='low', fill_value=fill_value, psidp_field=phidp_field, kdp_field=kdp_field, phidp_field=phidp_field) kdp['data'] = np.ma.masked_where(mask, kdp['data']) phidpf['data'] = np.ma.masked_where(mask, phidpf['data']) # prepare for exit new_dataset = {'radar_out': deepcopy(radar_aux)} new_dataset['radar_out'].fields = dict() new_dataset['radar_out'].add_field(phidp_field, phidpf) new_dataset['radar_out'].add_field(kdp_field, kdp) return new_dataset, ind_rad
[docs]def process_phidp_kdp_lp(procstatus, dscfg, radar_list=None): """ Estimates PhiDP and KDP using a linear programming algorithm. This method only retrieves data in rain (i.e. below the melting layer) Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types fzl : float. Dataset keyword The freezing level height [m]. Default 2000. ml_thickness : float. Dataset keyword The melting layer thickness in meters. Default 700. beamwidth : float. Dataset keyword the antenna beamwidth [deg]. If None that of the keys radar_beam_width_h or radar_beam_width_v in attribute instrument_parameters of the radar object will be used. If the key or the attribute are not present the beamwidth will be set to None radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None temp_field = None iso0_field = None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == 'PhiDP': psidp_field = 'differential_phase' if datatype == 'PhiDPc': psidp_field = 'corrected_differential_phase' if datatype == 'uPhiDP': psidp_field = 'uncorrected_differential_phase' if datatype == 'dBZ': refl_field = 'reflectivity' if datatype == 'dBZc': refl_field = 'corrected_reflectivity' if datatype == 'RhoHVc': rhv_field = 'corrected_cross_correlation_ratio' if datatype == 'RhoHV': rhv_field = 'cross_correlation_ratio' if datatype == 'SNRh': snr_field = 'signal_to_noise_ratio_hh' if datatype == 'TEMP': temp_field = 'temperature' if datatype == 'H_ISO0': iso0_field = 'height_over_iso0' ind_rad = int(radarnr[5:8])-1 if radar_list[ind_rad] is None: warn('No valid radar') return None, None radar = radar_list[ind_rad] if ((refl_field not in radar.fields) or (psidp_field not in radar.fields) or (rhv_field not in radar.fields) or (snr_field not in radar.fields)): warn('Unable to retrieve PhiDP and KDP using the LP approach. ' + 'Missing data') return None, None # determine which freezing level reference temp_ref = 'temperature' if temp_field is None and iso0_field is None: warn('Field to obtain the freezing level was not specified. ' + 'Using fixed freezing level height') temp_ref = 'fixed_fzl' elif temp_field is not None: if temp_field not in radar.fields: warn('COSMO temperature field not available. ' + 'Using fixed freezing level height') temp_ref = 'fixed_fzl' elif iso0_field is not None: if iso0_field not in radar.fields: warn('Height over iso0 field not available. ' + 'Using fixed freezing level height') temp_ref = 'fixed_fzl' else: temp_ref = 'height_over_iso0' # determine freezing level height if necessary fzl = None if temp_ref == 'fixed_fzl': if 'fzl' in dscfg: fzl = dscfg['fzl'] else: fzl = 2000. warn('Freezing level height not defined. Using default ' + str(fzl)+' m') thickness = 700. if 'ml_thickness' in dscfg: thickness = dscfg['ml_thickness'] radar_aux = deepcopy(radar) # user config LP_solver = dscfg.get('LP_solver', 'cvxopt') # filter out data in an above the melting layer mask = np.ma.getmaskarray(radar_aux.fields[psidp_field]['data']) beamwidth = dscfg.get('beamwidth', None) if beamwidth is None: if radar.instrument_parameters is not None: if 'radar_beam_width_h' in radar.instrument_parameters: beamwidth = radar.instrument_parameters[ 'radar_beam_width_h']['data'][0] elif 'radar_beam_width_v' in radar.instrument_parameters: beamwidth = radar.instrument_parameters[ 'radar_beam_width_v']['data'][0] if beamwidth is None: warn('Antenna beam width unknown.') mask_fzl, _ = pyart.correct.get_mask_fzl( radar_aux, fzl=fzl, doc=15, min_temp=0., max_h_iso0=0., thickness=thickness, beamwidth=beamwidth, temp_field=temp_field, iso0_field=iso0_field, temp_ref=temp_ref) mask = np.logical_or(mask, mask_fzl) # filter out data with invalid reflectivity mask_refl = np.ma.getmaskarray(radar_aux.fields[refl_field]['data']) mask = np.logical_or(mask, mask_refl) radar_aux.fields[psidp_field]['data'] = np.ma.masked_where( mask, radar_aux.fields[psidp_field]['data']) phidp_field = 'corrected_differential_phase' kdp_field = 'corrected_specific_differential_phase' phidp, kdp = pyart.correct.phase_proc_lp( radar_aux, 0, debug=False, self_const=60000.0, low_z=10.0, high_z=53.0, min_phidp=0.01, min_ncp=10., min_rhv=0.6, fzl=4000.0, sys_phase=0.0, overide_sys_phase=True, nowrap=None, really_verbose=False, LP_solver=LP_solver, refl_field=refl_field, ncp_field=snr_field, rhv_field=rhv_field, phidp_field=psidp_field, kdp_field=kdp_field, unf_field=phidp_field, window_len=35, proc=1) kdp['data'] = np.ma.masked_where(mask, kdp['data']) phidp['data'] = np.ma.masked_where(mask, phidp['data']) # prepare for exit new_dataset = {'radar_out': deepcopy(radar)} new_dataset['radar_out'].fields = dict() new_dataset['radar_out'].add_field(phidp_field, phidp) new_dataset['radar_out'].add_field(kdp_field, kdp) return new_dataset, ind_rad
[docs]def process_kdp_leastsquare_single_window(procstatus, dscfg, radar_list=None): """ Computes specific differential phase using a piecewise least square method Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types rwind : float. Dataset keyword The length of the segment for the least square method [m] vectorize : bool. Dataset keyword Whether to vectorize the KDP processing. Default false radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == 'PhiDP': phidp_field = 'differential_phase' if datatype == 'PhiDPc': phidp_field = 'corrected_differential_phase' if datatype == 'uPhiDP': phidp_field = 'uncorrected_differential_phase' ind_rad = int(radarnr[5:8])-1 if radar_list[ind_rad] is None: warn('No valid radar') return None, None radar = radar_list[ind_rad] if phidp_field not in radar.fields: warn('Unable to retrieve KDP from PhiDP using least square. ' + 'Missing data') return None, None r_res = radar.range['data'][1]-radar.range['data'][0] wind_len = int(dscfg['rwind']/r_res) min_valid = int(wind_len/2+1) kdp_field = 'corrected_specific_differential_phase' vectorize = dscfg.get('vectorize', False) kdp = pyart.retrieve.kdp_leastsquare_single_window( radar, wind_len=wind_len, min_valid=min_valid, phidp_field=phidp_field, kdp_field=kdp_field, vectorize=vectorize) # prepare for exit new_dataset = {'radar_out': deepcopy(radar)} new_dataset['radar_out'].fields = dict() new_dataset['radar_out'].add_field(kdp_field, kdp) return new_dataset, ind_rad
[docs]def process_kdp_leastsquare_double_window(procstatus, dscfg, radar_list=None): """ Computes specific differential phase using a piecewise least square method Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types rwinds : float. Dataset keyword The length of the short segment for the least square method [m] rwindl : float. Dataset keyword The length of the long segment for the least square method [m] Zthr : float. Dataset keyword The threshold defining which estimated data to use [dBZ] vectorize : Bool. Dataset keyword Whether to vectorize the KDP processing. Default false radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == 'PhiDP': phidp_field = 'differential_phase' if datatype == 'PhiDPc': phidp_field = 'corrected_differential_phase' if datatype == 'uPhiDP': phidp_field = 'uncorrected_differential_phase' if datatype == 'dBZ': refl_field = 'reflectivity' if datatype == 'dBZc': refl_field = 'corrected_reflectivity' ind_rad = int(radarnr[5:8])-1 if radar_list[ind_rad] is None: warn('No valid radar') return None, None radar = radar_list[ind_rad] if (phidp_field not in radar.fields) or (refl_field not in radar.fields): warn('Unable to retrieve KDP from PhiDP using least square. ' + 'Missing data') return None, None r_res = radar.range['data'][1]-radar.range['data'][0] swind_len = int(dscfg['rwinds']/r_res) smin_valid = int(swind_len/2+1) lwind_len = int(dscfg['rwindl']/r_res) lmin_valid = int(lwind_len/2+1) vectorize = dscfg.get('vectorize', False) kdp_field = 'corrected_specific_differential_phase' kdp = pyart.retrieve.kdp_leastsquare_double_window( radar, swind_len=swind_len, smin_valid=smin_valid, lwind_len=lwind_len, lmin_valid=lmin_valid, zthr=dscfg['Zthr'], phidp_field=phidp_field, refl_field=refl_field, kdp_field=kdp_field, vectorize=vectorize) # prepare for exit new_dataset = {'radar_out': deepcopy(radar)} new_dataset['radar_out'].fields = dict() new_dataset['radar_out'].add_field(kdp_field, kdp) return new_dataset, ind_rad
[docs]def process_phidp_kdp_Vulpiani(procstatus, dscfg, radar_list=None): """ Computes specific differential phase and differential phase using the method developed by Vulpiani et al. The data is assumed to be clutter free and monotonous Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types rwind : float. Dataset keyword The length of the segment [m] n_iter : int. Dataset keyword number of iterations interp : boolean. Dataset keyword if set non valid values are interpolated using neighbouring valid values parallel : boolean. Dataset keyword if set use parallel computing get_phidp : boolean. Datset keyword if set the PhiDP computed by integrating the resultant KDP is added to the radar field frequency : float. Dataset keyword the radar frequency [Hz]. If None that of the key frequency in attribute instrument_parameters of the radar object will be used. If the key or the attribute are not present it will be assumed that the radar is C band radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == 'PhiDP': phidp_field = 'differential_phase' if datatype == 'PhiDPc': phidp_field = 'corrected_differential_phase' if datatype == 'uPhiDP': phidp_field = 'uncorrected_differential_phase' ind_rad = int(radarnr[5:8])-1 if radar_list[ind_rad] is None: warn('No valid radar') return None, None radar = radar_list[ind_rad] if phidp_field not in radar.fields: warn('Unable to retrieve KDP from PhiDP using least square. ' + 'Missing data') return None, None # number of iterations n_iter = 3 if 'n_iter' in dscfg: n_iter = dscfg['n_iter'] # window length (must be even) r_res = radar.range['data'][1]-radar.range['data'][0] wind_len = int(dscfg['rwind']/r_res) if wind_len % 2 == 1: wind_len += 1 # interpolate invalid values? interp = 0 if 'interp' in dscfg: interp = dscfg['interp'] # parallel computing? parallel = 1 if 'parallel' in dscfg: parallel = dscfg['parallel'] # get PhiDP computed from KDP? get_phidp = 0 if 'get_phidp' in dscfg: get_phidp = dscfg['get_phidp'] # get band freq = dscfg.get('frequency', None) if freq is None: if (radar.instrument_parameters is not None and 'frequency' in radar.instrument_parameters): freq = radar.instrument_parameters['frequency']['data'][0] band = 'C' if freq is None: warn('Radar frequency unknown. Default C band will be applied') else: band = pyart.retrieve.get_freq_band(freq) if band is None: if freq < 2e9: band = 'S' elif freq > 12e9: band = 'X' warn('Radar frequency out of range. Valid bands are S, C or X. ' + band + ' band will be applied') kdp_field = 'corrected_specific_differential_phase' phidpr_field = 'corrected_differential_phase' kdp_dict, phidpr_dict = pyart.retrieve.kdp_vulpiani( radar, gatefilter=None, fill_value=None, psidp_field=phidp_field, kdp_field=kdp_field, phidp_field=phidpr_field, band=band, windsize=wind_len, n_iter=n_iter, interp=interp, prefilter_psidp=False, filter_opt=None, parallel=parallel) # prepare for exit new_dataset = {'radar_out': deepcopy(radar)} new_dataset['radar_out'].fields = dict() new_dataset['radar_out'].add_field(kdp_field, kdp_dict) if get_phidp: new_dataset['radar_out'].add_field(phidpr_field, phidpr_dict) return new_dataset, ind_rad
[docs]def process_phidp_kdp_Kalman(procstatus, dscfg, radar_list=None): """ Computes specific differential phase and differential phase using the Kalman filter as proposed by Schneebeli et al. The data is assumed to be clutter free and continous Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types parallel : boolean. Dataset keyword if set use parallel computing get_phidp : boolean. Datset keyword if set the PhiDP computed by integrating the resultant KDP is added to the radar field frequency : float. Dataset keyword the radar frequency [Hz]. If None that of the key frequency in attribute instrument_parameters of the radar object will be used. If the key or the attribute are not present it will be assumed that the radar is C band radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == 'PhiDP': phidp_field = 'differential_phase' if datatype == 'PhiDPc': phidp_field = 'corrected_differential_phase' if datatype == 'uPhiDP': phidp_field = 'uncorrected_differential_phase' ind_rad = int(radarnr[5:8])-1 if radar_list[ind_rad] is None: warn('No valid radar') return None, None radar = radar_list[ind_rad] if phidp_field not in radar.fields: warn('Unable to retrieve KDP from PhiDP using least square. ' + 'Missing data') return None, None # User defined options parallel = dscfg.get('parallel', 1) get_phidp = dscfg.get('get_phidp', 0) # get band freq = dscfg.get('frequency', None) if freq is None: if (radar.instrument_parameters is not None and 'frequency' in radar.instrument_parameters): freq = radar.instrument_parameters['frequency']['data'][0] band = 'C' if freq is None: warn('Radar frequency unknown. Default C band will be applied') else: band = pyart.retrieve.get_freq_band(freq) if band is None: if freq < 2e9: band = 'S' elif freq > 12e9: band = 'X' warn('Radar frequency out of range. Valid bands are S, C or X. ' + band + ' band will be applied') kdp_field = 'corrected_specific_differential_phase' phidpr_field = 'corrected_differential_phase' kdp_dict, _, phidpr_dict = pyart.retrieve.kdp_schneebeli( radar, gatefilter=None, fill_value=None, psidp_field=phidp_field, kdp_field=kdp_field, phidp_field=phidpr_field, band=band, rcov=0, pcov=0, prefilter_psidp=False, filter_opt=None, parallel=parallel) # prepare for exit new_dataset = {'radar_out': deepcopy(radar)} new_dataset['radar_out'].fields = dict() new_dataset['radar_out'].add_field(kdp_field, kdp_dict) if get_phidp: new_dataset['radar_out'].add_field(phidpr_field, phidpr_dict) return new_dataset, ind_rad
[docs]def process_attenuation(procstatus, dscfg, radar_list=None): """ Computes specific attenuation and specific differential attenuation using the Z-Phi method and corrects reflectivity and differential reflectivity Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types ATT_METHOD : float. Dataset keyword The attenuation estimation method used. One of the following: ZPhi, Philin fzl : float. Dataset keyword The default freezing level height. It will be used if no temperature field name is specified or the temperature field is not in the radar object. Default 2000. radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None temp = None iso0 = None zdr = None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == 'dBZc': refl = 'corrected_reflectivity' if datatype == 'PhiDPc': phidp = 'corrected_differential_phase' if datatype == 'ZDRc': zdr = 'corrected_differential_reflectivity' if datatype == 'dBZ': refl = 'reflectivity' if datatype == 'PhiDP': phidp = 'differential_phase' if datatype == 'ZDR': zdr = 'differential_reflectivity' if datatype == 'TEMP': temp = 'temperature' if datatype == 'H_ISO0': iso0 = 'height_over_iso0' ind_rad = int(radarnr[5:8])-1 if radar_list[ind_rad] is None: warn('No valid radar') return None, None radar = radar_list[ind_rad] if phidp not in radar.fields or refl not in radar.fields: warn('Unable to compute attenuation. Missing data') return None, None # determine which freezing level reference temp_ref = 'temperature' if temp is None and iso0 is None: warn('Field to obtain the freezing level was not specified. ' + 'Using fixed freezing level height') temp_ref = 'fixed_fzl' elif temp is not None: if temp not in radar.fields: warn('COSMO temperature field not available. ' + 'Using fixed freezing level height') temp_ref = 'fixed_fzl' elif iso0 is not None: if iso0 not in radar.fields: warn('Height over iso0 field not available. ' + 'Using fixed freezing level height') temp_ref = 'fixed_fzl' else: temp_ref = 'height_over_iso0' # determine freezing level height if necessary fzl = None if temp_ref == 'fixed_fzl': if 'fzl' in dscfg: fzl = dscfg['fzl'] else: fzl = 2000. warn('Freezing level height not defined. Using default ' + str(fzl)+' m') att_method = dscfg.get('ATT_METHOD', 'ZPhi') if att_method not in ('ZPhi', 'Philin'): raise ValueError( 'Unknown attenuation correction method. ' + 'Must be one of the following: [ZPhi, Philin]') if att_method == 'ZPhi': spec_at, pia, cor_z, spec_diff_at, pida, cor_zdr = ( pyart.correct.calculate_attenuation_zphi( radar, doc=15, fzl=fzl, smooth_window_len=0, a_coef=None, beta=None, c=None, d=None, refl_field=refl, phidp_field=phidp, zdr_field=zdr, temp_field=temp, iso0_field=iso0, spec_at_field=None, pia_field=None, corr_refl_field=None, spec_diff_at_field=None, pida_field=None, corr_zdr_field=None, temp_ref=temp_ref)) elif att_method == 'Philin': spec_at, pia, cor_z, spec_diff_at, pida, cor_zdr = ( pyart.correct.calculate_attenuation_philinear( radar, doc=15, fzl=fzl, pia_coef=None, pida_coef=None, refl_field=refl, phidp_field=phidp, zdr_field=zdr, temp_field=temp, iso0_field=iso0, spec_at_field=None, pia_field=None, corr_refl_field=None, spec_diff_at_field=None, pida_field=None, corr_zdr_field=None, temp_ref=temp_ref)) # prepare for exit new_dataset = {'radar_out': deepcopy(radar)} new_dataset['radar_out'].fields = dict() new_dataset['radar_out'].add_field('specific_attenuation', spec_at) new_dataset['radar_out'].add_field('path_integrated_attenuation', pia) new_dataset['radar_out'].add_field('corrected_reflectivity', cor_z) if (spec_diff_at is not None) and (cor_zdr is not None): new_dataset['radar_out'].add_field( 'specific_differential_attenuation', spec_diff_at) new_dataset['radar_out'].add_field( 'path_integrated_differential_attenuation', pida) new_dataset['radar_out'].add_field( 'corrected_differential_reflectivity', cor_zdr) else: warn( ' Specific differential attenuation and attenuation ' + 'corrected differential reflectivity not available') return new_dataset, ind_rad